
ISRAEL JOURNAL OF MATHEMATICS, VoL 34, No. 4, 1979 

ON CR-SUBMANIFOLDS OF 
HERMITIAN MANIFOLDS 

BY 

D A V I D  E, B L A I R  A N D  B A N G - Y E N  C H E N  

ABSTRACT 

In this  p a p e r  we cons ide r  a C R - s u b m a n i f o l d  of a H e r m i t i a n  man i fo ld  and  p rove  

var ious  in tegrab i l i ty  t h e o r e m s  on the  submani fo ld .  W h e n  the  a m b i e n t  space  is 

Kaeh le r i an  a n u m b e r  of d i f ferent ia l  g e o m e t r i c  resul ts  are  also ob ta ined .  

1. Introduction 

Let M be an almost Hermitian manifold* with almost complex structure J and 

Hermitian metric g and N a Riemannian submanifold immersed in M. At each 

point p E N let ~p be the maximal holomorphic subspace of the tangent space 

TIN, i.e. J@p = @p. If the dimension of @p is the same for all p E N, we have a 

holomorphic distribution ~ on N. 

Recently in [1] A. Bejancu introduced the notion of a CR-submanifold of M. 

Precisely, N is a CR-submanifold of the almost Hermitian manifold M if there 

exists on N a C = holomorphic distribution @ which is non-trivial (@p~ {0} or 

TflV) such that its orthogonal complement ~1  is totally real in M [2], i.e. 

J~p C. TiN, TpN being the normal space at p. Clearly every real hypersurface of 

an almost Hermitian manifold is a CR-submanifold if dim N > 1. 

In the present paper we show that a CR-submanifold N of a Hermitian 

manifold is a CR-manifold in the usual sense [4] and prove other integrability 

theorems on N. We then give a characterization of CR-submanifolds of complex 

space forms in terms of the restriction of the curvature. Umbilical and totally 

geodesic CR-submanifolds of Kaehler manifolds are studied in detail. 

2. Preliminaries 

Let N be a Riemannian submanifold in a Hermitian manifold M. We denote 

by V (respectively, V) covariant differentiation with respect to the metric on N 

(respectively, on M). The curvature tensor R of V is given by 

*All man i fo lds  and  the i r  s t ruc tu res  a re  a s s u m e d  to  be  C | 
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(2.1) R ( X ,  Y) = V x V y  - V y V x  - Vtx,~,~ 

and we denote by /~ the curvature tensor with respect to V. The second 

fundamental form tr is given by 

(2.2) ~r(X, Y) = fTxY - VxY, 

for vector fields X, Y tangent to N. For a normal veetor field s c on N, we write 

(2.3) ~'x~ = - A~X + Vx~: 

where - AeX (respectively, V~:) is the tangential (respectively, normal) compo- 

nent of Vx~. We have 

(2.4) g(tr(X, Y), s ~) = g(AeX, Y). 

A normal vector field ~ is said to be parallel if Vlsr = 0. The mean-curvature 

vector H is defined by H = trace cr/n. A submanifold N is totally umbilical if 

(2.5) o-(X, Y)= g(X, Y)H. 

If tr = 0, N is said to be totally geodesic. 
For the second fundamental form o', we define the covariant differentiation 

with respect to the connection in (TN)O(T• by 

(2.6) (VxO')(Y,Z)=V~(tr(Y,Z))-tr(VxY, Z)- tr (Y,  VxZ), 

for all X, Y, Z tangent to N. The equations of Gauss, and Codazzi are then given 

respectively by 

R(X, Y;Z, W ) = / ~ ( X ,  Y; Z, W)+g(cr(X, W),tr(Y,Z)) 
(2.7) 

- g(o'(X, Z), tr(Y, W)), 

(2.8) (R (X, Y)Z) l = (Vxtr) (Y, Z )  - (Vrtr) (X, Z )  

where R(X, Y;Z, W)=g(R(X, Y)Z, W) and Z in (2.8) denotes the normal 

component.  

A Kaehler manifold M is a complex space form if it is of constant holomorphic 

sectional curvature. Let M(c) denote a complex space form of constant 

holomorphic sectional curvature c. Then we have 

(f~, s  = 41g ( Y, ;E)f~ - g (f~, 2 )  Y + g (JY, Z ) ] X  

(2.9) 
- g(JX, Z ) JY  + 2g(X, J~')J,Z}, 

where X, Y and Z, are vector fields tangent to M(c). 
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For a submanifold N in a Hermitian manifold M, let 9p denote the maximal 

holomorphic subspace of TflV. The distribution 9 : p ~ 9p, p E N is called the 

holomorphic distribution of N. 

3. Integrability of the.holomorphic distribution 

We first prove the following theorem which does not require that the 

submanifold be a CR-submanifold but only that the dimension of the maximal 

holomorphic subspace be constant. 

THEOREM 3.1. Let N be a submanifold of a Kaehler manifold M and 9p the 

maximal holomorphic subspace of TflV. Suppose dimgp = const. Then the 

holomorphic distribution 9 is integrable i[ and only if the second fundamental form 

tr satisfies tr(X, JY)  = tr(JX, Y) for all vector fields X and Y belonging to 9. 

PROOF. If 9 is integrable let N' be an integral submanifold, tr' the second 

fundamental form of N' in N and # the second fundamental form of N' in M. 

Since 9 is holomorphic, N' is a Kaehler submanifold of M and hence 

#(X, JY)  = 6r(JX, Y). Now # = tr + tr' and hence 

(3.1) tr(X, JY)  - tr(JX, Y) = tr'(JX, Y) - tr'(X, JY), 

but the left hand side is normal to N in M and the right hand side is tangent to N 

(normal to N' in N). Therefore both sides of equation (3.1) vanish giving the 

desired condition. 

Conversely, since J is parallel with respect to ~', 

0 = tr(X, JY)  - tr(JX, Y) = JfTxY - VxJY - JfTyX + VyJX 

= J[X, Y] - VxJY + V J X .  

Therefore J applied to the tangent vector field [X, Y] is tangent to N and hence 

[X, Y] belongs to the distribution 9. 

If N is a CR-submanifold, the integrability condition of the holomorphic 

distribution 9 can be replaced by a weaker condition as follows. 
\ 

PROPOSn'ION 3.2. Let N be a CR-submanifold of a Kaehler manifold M. Then 

the holomorphic distribution 9 is integrable if and only if 

(3.2) g(tr(X, JY),  ~) = g(tr(JX, Y), ~) 

for all X, Y ~ ~ and ~ E J ~ .  
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PROOF. For any Kaehler manifold M, we have VJ = 0. If N is a CR- 

submanifold in M, (2.2) and (2.3) imply 

(3.3) JV•  + Jo'(X, Z )  = - A j zX  + V~,JZ 

for X E TN and Z E ~ 1. From (2.4) we get 

(3.4) g(VxZ, Y)  = - g(o'(X, JY),  JZ)  

for X E TN, Y ~ ~ and Z E @l. Then (3.4) gives 

g(Z, VxY) = g(o-(X, JY),  JZ). 

From this we have for X, Y ~  ~ and Z ~ ~ l ,  

g(Z, [X, Y])= g(tr(x,  J r ) - t r ( J X ,  Y) ,JZ) ,  

giving the proposition. 

4. CR-manifolds 

We first recall the notion of a CR-manifold. Let N be a differentiable manifold 

and TcN its complexified tangent bundle. A CR-structure [4] on N is a complex 

subbundle ~ of TcN such that ~p n ~p = 0 and ~ is involutive, i.e. for complex 

vector fields X and Y in ~,  [X,Y] is in ~.  It is well known that on a 

CR-manifold there exists a (real) distribution ~ and a field of endomorphisms 

J : ~ - - ~  such that ~ 2 = _ i ~ .  ~ is just R e ( ~ ) ~ )  and ~gp= 

{X - ~/-----I~X IX E ~p}. We can now state the following result which justifies 

the name of CR-submanifolds. 

THEOREM 4.1. Let M be an Hermitian manifold and N a CR-submanifold, 

then N is a CR-manifold. 

On N we denote by P the projection map of TN to ~ and by Q the 

projection to 9 • We define a tensor field ~ of type (1, 1) on N by ~ = JP. Now 

on N we define a complex subbundle ~ by ~p = {X - ~----1,,~X IX E ~ } .  The 

following lemma is clear. 

LEMMA 4.2. - J ( X -  ~ - - - - l J X ) E  ~[~ for every X E Tr, N. 

LEMMA 4.3. For vector fields X and Y belonging to 9, 

O([JX, Y] + [X, JY]) = O. 
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PROOF. Since M is Hermitian, the Nijenhuis torsion [J ,J]  of J vanishes. 

Therefore  

0 = [J, J] (JX, Y)  = - [JX, Y] - [X, JY] + J[X, Y] - J[JX, JY],  

but [X, Y] and [JX, JY] are tangent to N and hence J[X, Y] - J[JX, JY] has no 

component in ~ .  Thus [JX, Y] + [X, JY] has no @ ~ component.  

PROOF OF THEOREM 4.1. Let X and Y be vector fields belonging to @. Then 

using [J, J] = 0 

[ X -  X / -  l J X ,  Y -  X / -  l J Y ]  

= [X, Y ] -  [JX, JY]-  ~,/--Z~[JX, Y ] -  ",/- I[X, JY] 

= - J[JX, Y] - J[X, JY]  - ~v / - l[JX, Y] - ~/----I[X, JY] 

= - J [JX,  Y ]  - J Q [ J X ,  g ]  - ~ Ix, J Y ]  - J Q  [x, Jr]  

+ ~r l j 2 [ j X ,  Y] - ~/---~O[JX, Y] + ~/--Z-~2[X, JY] - % / -  1Q[X, JY] 

= - ~ ([JX, Y] - ~ / - - - - lJ  [JX, Y]) - ~ ([X, J Y ]  - ~/_-L--~ [X, JY]) 

- JQ([JX, Y] + [X, JY] ) -  x / -  lO([JX, Y] + [X, JY]). 

By Lemma 4.3 the last two terms vanish and by Lemma 4.2 the first two terms 

belong to ~.  

5. An analytic obstruction to CR-submanifolds  

Again let us suppose M is Hermitian and let f~ be the fundamental 2-form of 

M, i.e. ~(X,  Y) = g(X, JY) .  It is well known that M is Kaehlerian if and only if 

df~ = 0. Here  however let us consider a slightly larger class of Hermitian 

manifolds, namely those for which df~ = f l  ^ to for some 1-form to called the Lee 

form. When to is closed I. Vaisman [6] calls these manifolds locally conformal 

symplectic and they include the well known Hopf  manifolds. 

THEOREM 5.1. Let M be a Hermitian manifold with df~ = I'l A to. Theft in 

order that N be a CR-submanifold it is necessary that ~ "  be integrable. 
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PROOF. Let X be a vector field in ~ and Z and W vector fields in ~+. Then 

I~(X,Z) = 0 and I)(Z, W) -- O. Consequently ~ ^ to(X, Z, W) = 0 and hence 

0 = 3dfl(X, Z, W) 

= x a ( z ,  w ) -  z a ( x ,  w)  + w a ( x ,  z )  

- n ( [x ,  z ] ,  w )  - t~([ w, x l ,  z )  - n ( [z ,  w] ,  x )  

= - g([Z, Wl, sx) ,  

but X and hence JX is arbitrary in ~ and [Z, W] is tangent to N, therefore 

[Z, W] is in ~ • 

6. Characterization of CR-submanifolds 

We first give the following characterization of CR-submanifolds in a complex 

space form in terms of the curvature tensor of the ambient space. 

THEOREM 6.1. Let N be a submanifold of a complex space form M(c) with 

c ~ O. Then N is a CR-submanifold if and only if the maximal holomorphic 
subspaces ~ = TpN t'l J ( TflV), p E N, define a nontrivial differentiable distribu- 
tion ~ on N such that 

(6.1) /~(~, ~ ;  ~ ' ,  ~-~) = O, 

where @ ~ denotes the orthogonally complementary distribution of ~ in N. 

PROOF. Let X, Y, Z be vector fields tangent to N. If N is a CR-submanifold 

for any X, Y E ~, and Z E ~ l ,  (2.9) gives 

(X, Y ) Z  = c ~g(X, JY)JZ. 

Because JZ is normal to N for any Z E ~• we then obtain (6.1). 

Conversely, if the maximal holomorphic subspaces ~p--TpNflJ(TflV),  

p E N, define a nontrivial ditterentiable distribution ~ such that (6.1) holds, then 

(2.9) implies that 

o = ~(Jx,  x ; z ,  w ) =  2g(X,X)g(JZ, w )  

for all X E ~ and Z, W E ~• From this we see that J ~  is perpendicular to ~ .  
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Since ~ is holomorphic, J ~  is also perpendicular to ~p. Therefore J ~  C TiN. 

This shows that N is a CR-submanifold. 

7. Totally umbilical submanifolds 

In this section we shall study totally umbilical CR-submanifolds in detail. 

If N is a totally umbilical CR-submanifold in a Kaehler manifold M, then we 

have 

(7.1) tr(X, Y) = g(X, Y ) H  

for X, Y E TN. From this we find 

(7.2) g (tr(X, X), JW) = g(X, X)g(H, JW) 

f o r X E T N a n d  W E ~ I .  

From (3.3) we have 

(7.3) A ~ Z  = A j z W  

for Z, W E  ~ .  Thus for any unit vector Z E ~• perpendicular to W, (7.2) and 

(7.3) give 

g(B, 1 w )  = x ) ,  y w )  = w ) ,  J x )  = 0; 

this shows that H is always perpendicular to J~• Consequently, we have the 

following. 

LEMMA 7.1. If  N is a totally umbilical CR-submanifold of a Kaehler manifold 
M, then either the totally real distribution ~• is 1-dimensional or the mean- 

curvature vector H is perpendicular to J~• 

A submanifold N in a Kaehler manifold M is anti-holomorphic if each normal 

space T i N  is carried into the tangent space TflV by the complex structure J of 

M, that is, J (T~N)C  T~N. In fact, an anti-holomorphic submanifold N in M is 

nothing but a CR-submanifold with T~N~J(Tf lV)= TrVI, p E N if d imN > 

�89 M. Applying Lemma 7.1 to anti-holomorphic submanifolds, we have the 

following. 

THEOREM 7.2. I f  N is a totally umbilical anti-holomorphic submanifold in any 

Kaehler manifold, then either N is totally geodesic or N is a real hypersurface. 
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For a CR-submanifold N, a plane section X A Z with X E @ and Z E @l is 

called a CR-section. The sectional curvature/ - ( (~)  of a CR-section 7r is called a 

CR - sectional curvature. 

THEOREM 7.3. Let N be a totally umbilical CR-submanifold of any Kaehler 

manifold M. Then the CR-sectional curvatures of M vanish that is I?i(rr) = 0 for 

all CR-sections 7r. 

PROOF. Since N is a totally umbilical submanifold, (2.6) implies 

(7.4) (fTxO-) (Y, Z )  = g(Y ,  Z )VxH.  

For any ~ E T• the equation (2.8) of Codazzi gives 

_~ (X, Y;  Z, ~ ) = g(  Y, Z )g (V~H,  ~) - g(X,  Z)g(V~.H, ~ ). 

In particular, for any unit vectors X E ~ and Z E ~• we have 

~(x,z;ix, Jz)= ~(x,z;x,z)=o. 

This proves the theorem. 

8. Totally geodesic submanifoids 

Let M be a Kaehler manifold and N a totally geodesic CR-submanifold. By 

Theorem 3.1 or Theorem 3".2 the holomorphic distribution ~ of N is integrable 

and let N '  be an integral submanifold of 9.  Equation (3.4) then gives the 

following lemma. 

LE~MA 8.1. N'  is totally geodesic in N. 

Similarly by Theorem 5.1, 9 • is integrable and let L be an integral 

submanifold. 

LEMMA 8.2. L is totally geodesic in N. 

PROOF. Let V' be the induced connection on L. We denote by tr' the second 

fundamental form of L in N. Then since J is parallel with respect to V, the 

Gauss-Weingarten equations give for Z and W tangent to L, 

1 t ~ w  = 1 v t w  + let'(z, w )  
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and 

J ~ z W  = fT~jw = v~JW. 

Now V~JW lies in the normal bundle T~N, JV~:W lies in J ~ ' C  T~N and 

Joe'(Z, W) lies in 9 ,  since oe'(Z, W)  lies in 9.  Consequently tr '(Z, W ) =  0 as 

desired. 

THEOREM 8.3. Let N be a totally geodesic CR-submanifold of a Kaehler 

manifold M. Then N is locally the Riemannian product of a Kaehler submanifold 

and a totally real submanifold. 

PROOF. By Theorem 3.1 ~ is integrable and by Theorem 5.1 9 • is 

integrable. Thus, N is locally the product of a Kaehler submanifold and a totally 

real submanifold. Hence, it remains only to show that this locally product 

structure is Riemannian. For this it suffices to show that the projection map P (or 

Q) is parallel with respect to V. 

By Lemma 8.1 integral submanifolds of @ are totally geodesic in M and hence 

in N. Thus for X and Y in 9,  

(VxP) Y = V x P Y  - P V x Y  = VxY - VxY = 0. 

F o r X i n  ~ a n d Z i n  9 1  

(VxP)Z = - PV• = - PV~IZ  = 0 

where V '1 is the connection in normal bundle of the foliation by ~ in N. 

Similarly by Lemma 8.2 integral submanifolds of 9 • are totally geodesic in N. 

Thus 

(VzP)X = VzX - PVzX = O. 

Finally for Z and W in 5~ ~, V z W  is in ~ and hence 

( V z P ) W  = - P V ~ W  = O. 

9. A counterexample 

The purpose of this section is to give an example of a CR-submanifold of a 

Hermitian manifold on which 5~ • is not integrable. The example makes use of 

the geometry of the tangent bundle of a Riemannian manifold. 

Let ~ be a symmetric connection on a ditierentiable manifold M and X a 
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vector field on M. Then ~ determines a vector field X H on TM called the 

horizontal lift of X (see e.g. [7]). On the other hand the vertical lift X v of X is 

independent of the connection and is simply defined by XVto = to(X)orr,  

7r : TM---~M being the natural projection and to a 1-form on M. For a tensor 

field 0 of type (1, 1) on M its horizontal lift On may be defined by ~,nX v = 
(~bX) v and d/nX H= (~bX) M. 

Recall the connection map K : TTM--~ TM given by K ( X  v) = X,~<z), K X "  = 

0 [3]. If now G is a Riemannian metric on M and ~ its Levi-Civita connection, 

we define the Sasaki metric g on TM by 

g(X, Y ) =  O ( ~ . X ,  ~ .  Y)  + G(r,X, K Y )  

where here X and Y are vectors on TM [3, 5]. The Levi-Civita connection V of 

g is given in terms of ~ and its curvature tensor R by 

(Vx .Yn) z  = (r �89 Y )Z )  v, 

(Vx .yV)z  = (~xY) v -  �89 (Y, Z ) X )  n, 

(VxvYn)z  = - �89 Z ) Y )  n, 

VxvY  v = O. 

Now let M be an almost Hermitian manifold with structure tensors (J, G), j n  
the horizontal lift of J to T M  and g the Sasaki metric on TM. Then it is easy to 
check that (jn, g) is an almost Hermitian structure on TM. Moreover the 

Nijenhuis torsion is given by (see e.g. [7]) 

[jr,, jH] (X v, y v )  = O, 

[jn, j n ] ( X V  ' y n ) =  [J,J](X, y)V, 

[jn,  jHl  (X H, yM)z = [j, j] (X, Y)'~+ {R (JX, J Y ) Z  

+ JR (JX, Y ) Z  + JR (X, J Y ) Z  + R (X, Y)Z}  v 

where as above Z E TM and R is the curvature tensor of G. 

THEOREM 9.1. Let M be a Kaehler manifold, then TM with the structure 

(J% g) is a Hermitian manifold which is Kaehlerian if and only if M is flat. 

PROOF. That [J% jr,] = 0 follows immediately from the fact that [J, J] = 0 

and the curvature identities of a Kaehler manifold. Now using the fact that 
~J  = 0 we have 
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((Vx-J n) yU)z  = �89 (JR (X, Y)Z  - R (X, JY)Z)  v 

and similar expressions for the other components. Then clearly R = 0 implies 

that j u  is parallel. Conversely, if j n  is parallel, R(X, Y)JZ = JR(X, Y )Z  = 

R (X, JY)Z  on M and hence 

G(R (X, JY)Z, W)= G(R (X, Y)JZ, W)= G(R (JZ, W)X, Y) 

= G (R (Z, W)JX, Y) = - G (R (Z, W)X, JY) = - G (R (X, JY)Z, W). 

But X, JY, Z, W are arbitrary vector fields on M and hence R = 0. 

We now take M to be complex projective space PC n with the Fubini-Study 

metric and consider the real projective space PR" as a totally real, totally 

geodesic submanifold imbedded in PC". Let N 3n be the set of all fibres of TPC" 

over the points of PR". By Theorem 9.1 TPC" is a Hermitian manifold which is 

not Kaehlerian. Since P R  n is totally real in PC" and j n  acts invariantly on the 

fibres of TPC", N 3" is a CR-submanifold of TPC". Let X and Y be tangent 

vector fields to PR", then X n and Yn are in 9 • on N 3", but 

[X n, Ynlz  = [X, g ] z  n -  (R(X, Y)Z)  v 

= IX, Y]~-  ~(G(Y, Z ) X  - G(X, Z ) Y  + G(Z, JY)JX - G(Z, JX)JY) v. 

Taking X and Y orthonormal and Z = Y,,tz) we see that the vertical part does 

not vanish. Thus the distribution 9 • on N 3n is not integrable. 
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