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ON CR-SUBMANIFOLDS OF
HERMITIAN MANIFOLDS

BY
DAVID E. BLAIR AND BANG-YEN CHEN

ABSTRACT

In this paper we consider a CR-submanifold of a Hermitian manifold and prove
various integrability theorems on the submanifold. When the ambient space is
Kaehlerian a number of differential geometric results are also obtained.

1. Introduction

Let M be an almost Hermitian manifold’ with almost complex structure J and
Hermitian metric g and N a Riemannian submanifold immersed in M. At each
point p € N let &, be the maximal holomorphic subspace of the tangent space
T,N, i.e. J%, = @,. If the dimension of &, is the same for all p € N, we have a
holomorphic distribution & on N.

Recently in [1] A. Bejancu introduced the notion of a CR-submanifold of M.
Precisely, N is a CR-submanifold of the almost Hermitian manifold M if there
exists on N a C” holomorphic distribution & which is non-trivial (2, # {0} or
T,N) such that its orthogonal complement @* is totally real in M [2], i.e.
JB, CT,N, T,N being the normal space at p. Clearly every real hypersurface of
an almost Hermitian manifold is a CR-submanifold if dim N > 1.

In the present paper we show that a CR-submanifold N of a Hermitian
manifold is a CR-manifold in the usual sense [4] and prove other integrability
theorems on N. We then give a characterization of CR-submanifolds of complex
space forms in terms of the restriction of the curvature. Umbilical and totally
geodesic CR-submanifolds of Kaehler manifolds are studied in detail.

2. Preliminaries

Let N be a Riemannian submanifold in a Hermitian manifold M. We denote
by V (respectively, V) covariant differentiation with respect to the metric on N
(respectively, on M). The curvature tensor R of V is given by

* All manifolds and their structures are assumed to be C=.
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(2.1) R(X, Y) = VxVy - Vny - V[X,Y]
and we denote by R the curvature tensor with respect to V. The second
fundamental form o is given by

(2.2) a(X,Y)=V,Y - V.Y,
for vector fields X, Y tangent to N. For a normal vector field ¢ on N, we write
(2.3) Vit = — AX + Vié

where — A.X (respectively, Vx£) is the tangential (respectively, normal) compo-
nent of Vx& We have

(2.9) go(X, Y),£)=g(AX Y).

A normal vector field ¢ is said to be parallel if V*¢ = 0. The mean-curvature
vector H is defined by H = trace o/n. A submanifold N is totally umbilical if

2.5) o(X, Y)=g(X, Y)H.

If ¢ =0, N is said to be totally geodesic.
For the second fundamental form o, we define the covariant differentiation V
with respect to the connection in (TN)@ (T*N) by

(2.6) (Vxo)(Y, Z) = Vx(0(Y, Z)) - 0(VxY, Z) - o(Y, VxZ),
for all X, Y, Z tangent to N. The equations of Gauss, and Codazzi are then given

respectively by

R(X,Y;Z W)=R(X,Y;Z W)+g(s(X, W), o(Y,2))
2.7) - g(0(X,Z),a(Y, W)),
2.8) (R(X, Y)2)" = (Vx0) (Y, Z) - (Vvo)(X, Z)

where R(X,Y;Z, W)=g(R(X,Y)Z, W) and L in (2.8) denotes the normal
component.

A Kaehler manifold M is a complex space form if it is of constant holomorphic
sectional curvature. Let M(c) denote a complex space form of constant
holomorphic sectional curvature c. Then we have

R(X, V)Z = §{e(V, 2)X - g(X, 2)Y + (¥, 2)IX
29) _ gUR. Z)IY +25(R IV)IZ),

where X, Y and Z are vector fields tangent to M(c).
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For a submanifold N in a Hermitian manifold M, let &, denote the maximal
holomorphic subspace of T,N. The distribution & : p — 9,, p € N is called the
holomorphic distribution of N.

3. Integrability of the holomorphic distribution

We first prove the following theorem which does not require that the
submanifold be a CR-submanifold but only that the dimension of the maximal
holomorphic subspace be constant.

THeEOREM 3.1. Let N be a submanifold of a Kaehler manifold M and 3, the
maximal holomorphic subspace of T,N. Suppose dim @, =const. Then the
holomorphic distribution 9 is integrable if and only if the second fundamental form
o satisfies o(X,JY) = o(JX, Y) for all vector fields X and Y belonging to 9.

Proor. If @ is integrable let N’ be an integral submanifold, o’ the second
fundamental form of N’ in N and & the second fundamental form of N’ in M.
Since & is holomorphic, N’ is a Kaehler submanifold of M and hence
d(X,JY)=a(X, Y). Now ¢ = ¢ + o' and hence

3.1) o(X,JY)- o(JX, Y) = o'(JX, Y)- o'(X,JY),

but the left hand side is normal to N in M and the right hand side is tangent to N
(normal to N’ in N). Therefore both sides of equation (3.1) vanish giving the
desired condition.

Conversely, since J is parallel with respect to ¥V,

0=0(X,JY)-o(X,Y)=TVY -V, JY - TV, X + V,JX
=J[X, Y]-VJY + V., JX.

Therefore J applied to the tangent vector field [ X, Y] is tangent to N and hence
[X, Y] belongs to the distribution 2.

If N is a CR-submanifold, the integrability condition of the holomorphic
distribution & can be replaced by a weaker condition as follows.

N

ProrosiTioN 3.2. LetN be a CR-submanifold of a Kaehler manifold M. Then
the holomorphic distribution @ is integrable if and only if

(3.2) g(o(X,JY), £) = g(o(JX, Y),§)
forall X, YE D and ¢ €EJD".
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Proor. For any Kaehler manifold M, we have VJ=0. If N is a CR-
submanifold in M, (2.2) and (2.3) imply
(3.3) JVZ +Jo(X,Z)= — AzX +VXJZ
for X € TN and Z € @*. From (2.4) we get
3.4) g(VxZ, V)= —g(c(X,JY),JZ)
for X€ETN, YE D and Z € @". Then (3.4) gives
g(Z,VY)=g(o(X,JY),JZ).
From this we have for X, YE€ @ and Z € @,
¢(Z,[X, Y)) = g(a(X,JY) - 0(JX, Y),JZ),

giving the proposition.

4. CR-manifolds

We first recall the notion of a CR-manifold. Let N be a differentiable manifold
and TN its complexified tangent bundle. A CR-structure [4] on N is a complex
subbundle % of TcN such that %, N %, = 0 and ¥ is involutive, i.e. for complex
vector fields X and Y in %, [X, Y] is in . It is well known that on a
CR-manifold there exists a (real) distribution & and a field of endomorphisms
$:9>9P such that $’=-1, D is just Re(¥PH) and ¥, =
{(X-V-18X | X € 9,}. We can now state the following result which justifies
the name of CR-submanifolds.

THEOREM 4.1. Let M be an Hermitian manifold and N a CR-submanifold,
then N is a CR-manifold.

On N we denote by P the projection map of TN to & and by Q the
projection to @*. We define a tensor field ¢ of type (1,1) on N by # = JP. Now
on N we define a complex subbundle % by ¥, ={X -V - 19X | X € 9,}. The
following lemma is clear.

LemMMa 42. — $(X -V ~1$X)€E ¥, for every X € T,N.
Lemma 4.3. For vector fields X and Y belonging to %,
QIX, Y]+ [X,JY])=0.
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Proor. Since M is Hermitian, the Nijenhuis torsion [J,J] of J vanishes.
Therefore
0=[J,J]UX, Y)= - [JX, Y] - [X,JY]+ J[X, Y] - J[JX,JY],

but [X, Y] and [JX, JY] are tangent to N and hence J[X, Y] - J[JX, JY] has no
component in @*. Thus [JX, Y]+ [X,JY] has no @* component.

Proor oF THEOREM 4.1. Let X and Y be vector fields belonging to 2. Then
using [J,J]=0

[X-V-14X, Y-V -1§Y]

(X, Y]-[JX,JY]-V=1[JX, Y]~V ~-1[X,JY]

—J[JX, Y] - J[X,JY]-V—-1[JX, Y]- V-1[X,]Y]

- FUUX, Y]-JQUIX, Y)- (X, JY]- JQ[X,JY]
+ V187X, Y]- V-10[JX, Y]+ V- 1$]X,JY]- V- 1Q[X,JY]
= - J(UX Y)- V- 14X, Y]) - $(( X, TY] - V- 1$[X,TY])

-JO(UX, Y]+ [X,JY]) -V -10(JX, Y]+ [X,JY)).

By Lemma 4.3 the last two terms vanish and by Lemma 4.2 the first two terms
belong to .

5. An analytic obstruction to CR-submanifolds

Again let us suppose M is Hermitian and let {2 be the fundamental 2-form of
M, ie UX Y)=g(X,JY). It is well known that M is Kaehlerian if and only if
dQ =0. Here however let us consider a slightly larger class of Hermitian
manifolds, namely those for which dQ} = Q A w for some 1-form w called the Lee
form. When o is closed I. Vaisman [6] calls these manifolds locally conformal
symplectic and they include the well known Hopf manifolds.

THEOREM 5.1. Let M be a Hermitian manifold with dQ = Q A w. Then in
order that N be a CR-submanifold it is necessary that 2* be integrable.
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Proor. Let X be a vector field in @ and Z and W vector fields in @*. Then
Q(X,Z)=0 and Q(Z, W)= 0. Consequently QA o(X,Z, W)=0 and hence
0=3dUX,Z W)
= XWZ W)-ZQX, W)+ WQ(X, Z)
-(X, Z], W)~ (W, X], Z) - [ Z, W], X)
= - g(Z, W}, JX),

but X and hence JX is arbitrary in @ and [Z, W] is tangent to N, therefore
[Z, W] is in 9.

6. Characterization of CR-submanifolds

We first give the following characterization of CR-submanifolds in a complex
space form in terms of the curvature tensor of the ambient space.

THEOREM 6.1. Let N be a submanifold of a complex space form M(c) with
c#0. Then N is a CR-submanifold if and only if the maximal holomorphic
subspaces @, = T,N NJ(T,N), p € N, define a nontrivial differentiable distribu -
tion @ on N such that

6.1 R(2,9;9*,92*) =0,

where 9* denotes the orthogonally complementary distribution of & in N.

Proor. Let X, Y, Z be vector fields tangent to N. If N is a CR-submanifold
for any X, YE 9, and Z € 9+, (2.9) gives

R(X,Y)Z = -§g(X, IY)JZ.
Because JZ is normal to N for any Z € 9$*, we then obtain (6.1).
Conversely, if the maximal holomorphic subspaces &, =T,N NJ(T,N),
p € N, define a nontrivial differentiable distribution & such that (6.1) holds, then
(2.9) implies that
0=RUX, X;Z,W)=5g(X, X)s(JZ, W)

forall X € @ and Z, W € 9. From this we see that J&, is perpendicular to 9;.
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Since 9 is holomorphic, J%; is also perpendicular to &,. Therefore J%, C T, N.
This shows that N is a CR-submanifold.

7. Totally umbilical submanifolds

In this section we shall study totally umbilical CR-submanifolds in detail.
If N is a totally umbilical CR-submanifold in a Kaehler manifold M, then we
have

(7.1) o(X,Y)=g(X, Y)H
for X, Y € TN. From this we find
(72) g(a(X, X),JW) = g(X, X)g(H,JW)

for X€ TN and WeE 9"
From (3.3) we have

(1.3) AwZ = AW

for Z, W € @*. Thus for any unit vector Z € 9* perpendicular to W, (7.2) and
(7.3) give

g(H,JW) = g(a(X, X),JW) = g(o(X, W), JX) = 0;

this shows that H is always perpendicular to J%*. Consequently, we have the
following.

Lemma 7.1.  If Nis a totally umbilical CR-submanifold of a Kaehler manifold
M, then either the totally real distribution @* is 1-dimensional or the mean-
curvature vector H is perpendicular to J9™.

A submanifold N in a Kaehler manifold M is anti-holomorphic if each normal
space TN is carried into the tangent space T,N by the complex structure J of
M, that is, J(T; N) CT,N. In fact, an anti-holomorphic submanifold N in M is
nothing but a CR-submanifold with T,N@J(T,N)=T,M, pEN if dimN >
3dim M. Applying Lemma 7.1 to anti-holomorphic submanifolds, we have the
following.

THEOREM 7.2. If Nis a totally umbilical anti-holomorphic submanifold in any
Kaehler manifold, then either N is totally geodesic or N is a real hypersurface.
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For a CR-submanifold N, a plane section X A Z with X€ P and Z€ D" is
called a CR-section. The sectional curvature K () of a CR-section = is called a
CR-sectional curvature.

TueoreM 7.3. Let N be a totally umbilical CR-submanifold of any Kaehler
manifold M. Then the CR-sectional curvatures of M vanish that is K(w)=0 for
all CR-sections .

Proor. Since N is a totally umbilical submanifold, (2.6) implies
(7.4) (Vxo)(Y, Z) = g(Y, Z)VxH.

For any £ € T*N, the equation (2.8) of Codazzi gives
R(X,Y;2,€)=g(Y, Z)8(VxH, £) — g (X, Z)g(V+H, §).
In particular, for any unit vectors X € 9 and Z € 9", we have
R(X,Z;JX,JZ)=R(X,Z;X,Z)=0.

This proves the theorem.

8. Totally geodesic submanifolds

Let M be a Kaehler manifold and N a totally geodesic CR-submanifold. By
Theorem 3.1 or Theorem 3.2 the holomorphic distribution & of N is integrable
and let N’ be an integral submanifold of &. Equation (3.4) then gives the
following lemma.

Lemma 8.1. N’ is totally geodesic in N.

Similarly by Theorem 5.1, 2" is integrable and let L be an integral
submanifold.

Lemma 8.2. L is totally geodesic in N.

Proor. Let V' be the induced connection on L. We denote by o' the second
fundamental form of L in N. Then since J is parallel with respect to V, the
Gauss-Weingarten equations give for Z and W tangent to L,

TV W = JVLW + Jo'(Z, W)
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and
JV,W =V, JW = VLIW.

Now VzJW lies in the normal bundle T*N, JVZW lies in J2'CT*N and
Jo'(Z, W) lies in @, since o'(Z, W) lies in &. Consequently o'(Z, W)=0 as
desired.

THEOREM 8.3. Let N be a totally geodesic CR-submanifold of a Kaehler
manifold M. Then N is locally the Riemannian product of a Kaehler submanifold
and a totally real submanifold.

Proor. By Theorem 3.1 & is integrable and by Theorem 5.1 @~ is
integrable. Thus, N is locally the product of a Kaehler submanifold and a totally
real submanifold. Hence, it remains only to show that this locally product
structure is Riemannian. For this it suffices to show that the projection map P (or
Q) is parallel with respect to V.

By Lemma 8.1 integral submanifolds of & are totally geodesic in M and hence
in N. Thus for X and Y in &,

(VxP)Y = VxPY — PV, Y = V,Y - V.Y =0.
For X in ¥ and Z in @*
(VxP)Z = —PVyZ = —PVx'Z =0

where V'* is the connection in normal bundle of the foliation by 9 in N.
Similarly by Lemma 8.2 integral submanifolds of &* are totally geodesic in N.
Thus

(V2P)X =V X - PVX =0.
Finally for Z and W in @+, V,W is in &* and hence
(VzP)W = — PV, W =0.

9. A counterexample

The purpose of this section is to give an example of a CR-submanifold of a
Hermitian manifold on which @* is not integrable. The example makes use of
the geometry of the tangent bundle of a Riemannian manifold.

Let V be a symmetric connection on a differentiable manifold M and X a
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vector field on M. Then V determines a vector field X" on TM called the
horizontal lift of X (see e.g. [7]). On the other hand the vertical lift XV of X is
independent of the connection and is simply defined by X" w = w(X)em,
7 : TM — M being the natural projection and w a 1-form on M. For a tensor
field ¢ of type (1,1) on M its horizontal lift ¢ may be defined by ¢"X" =
(¥X)" and X" = (YX)".

Recall the connection map K : TTM — TM given by K(XY) = X, (z),, KX" =
0 [3]. If now G is a Riemannian metric on M and V its Levi-Civita connection,
we define the Sasaki metric g on TM by

gXY)=G(#, X, 7, Y)+ G(KX KY)

where here X and Y are vectors on TM [3,5]. The Levi-Civita connection V of
g is given in terms of V and its curvature tensor R by

(VxuY")z = (VxY)E - 3(R(X, Y)Z)",
(Vxu YY)z = (VxY)Z-3(R(Y, Z)X)",
(VxvY™)z = ~3(R(X, Z)Y)",
VYV =0.

Now let M be an almost Hermitian manifold with structure tensors (J, G), J¥
the horizontal lift of J to TM and g the Sasaki metric on TM. Then it is easy to
check that (J¥, g) is an almost Hermitian structure on TM. Moreover the
Nijenhuis torsion is given by (see e.g. [7])

(% T"1(XY, YY) =0,
[T5T71(XY, YH) = [LIIX, Y)Y,
5 I¥1XS, YH)2 = [, J1(X, Y)4+{R(X,TY)Z
+JR(JX,Y)Z+JR(X,JY)Z+R(X,Y)Z}¥
where as above Z € TM and R is the curvature tensor of G.

THEOREM 9.1. Let M be a Kaehler manifold, then TM with the structure
(J¥, g) is a Hermitian manifold which is Kaehlerian if and only if M is flat.

Proor. That [J¥ J¥] =0 follows immediately from the fact that [J,J]=0
and the curvature identities of a Kaehler manifold. Now using the fact that
VJ =0 we have
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(VxJ®)Y™), =3(JR(X, Y)Z - R(X,TY)Z)"

and similar expressions for the other components. Then clearly R =0 implies
that J¥ is parallel. Conversely, if J¥ is parallel, R(X, Y)JZ = JR(X,Y)Z =
R(X,JY)Z on M and hence

G(R(X,JY)Z, W)= G(R(X, Y)JZ, W)= G(R(JZ, W)X, Y)
= G(R(Z, W)IX, Y)= — G(R(Z, W)X,JY) = - G(R(X,JY)Z, W).

But X,JY, Z, W are arbitrary vector fields on M and hence R =0.

We now take M to be complex projective space PC" with the Fubini-Study
metric and consider the real projective space PR" as a totally real, totally
geodesic submanifold imbedded in PC". Let N*" be the set of all fibres of TPC"
over the points of PR". By Theorem 9.1 TPC" is a Hermitian manifold which is
not Kaehlerian. Since PR" is totally real in PC" and J* acts invariantly on the
fibres of TPC", N*" is a CR-submanifold of TPC". Let X and Y be tangent
vector fields to PR", then X" and Y™ are in 9* on N*", but

[X", Y7z =[X, Y]Z- (R(X, Y)Z)"
=[X, Y]¥- {G(Y, Z)X - G(X, Z)Y + G(Z,TY)JX - G(Z,IX)IY)".

Taking X and Y orthonormal and Z = Y.z, we see that the vertical part does
not vanish. Thus the distribution 2* on N*" is not integrable.
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